Єгипетський дріб

Єгипетський дріб — в математиці сума різних одиничних дробів типу , наприклад . Так що кожен дріб є виразом в якому чисельник дорівнює 1, а знаменник — додатне ціле число, причому так, що знаменники всі різні. Сума виразу такого типу — це додатне раціональне число a/b; наприклад сума вищенаведеного єгипетського дробу — 43/48. Кожне додатне раціональне число може бути представлене у вигляді єгипетського дробу. Суми такого типу та подібні їм з доданками 2/3 і 3/4 використовували стародавні єгипетські математики для запису раціональних чисел, їх продовжували використовувати і пізніші цивілізації аж до середніх віків. Звичайні дроби та десяткові дроби з часом витіснили єгипетські дроби зі вжитку. Все ж єгипетські дроби залишаються об'єктом досліджень сучасної теорії чисел та розважальної математики, а також в історичних студіях стародавньої математики.

ІсторіяРедагувати

Стародавній ЄгипетРедагувати

Додаткову інформацію за даним питанням див. в Єгипетська система числення.

Єгипетські дроби були винайдені і вперше використані в стародавньому Єгипті. Одним з перших відомих згадок про єгипетські дроби є математичний папірус Рінда. Три більш давніх тексти, в яких згадуються єгипетські дроби — це Єгипетський математичний шкіряний сувій, московський математичний папірус і дерев'яна табличка Ахмім. Папірус Рінда був написаний писарем Ахмесом в епоху Другого перехідного періоду; він включає таблицю єгипетських дробів для раціональних чисел виду 2/ n , а також 84 математичні задачі, їх рішення та відповіді, записані у вигляді єгипетських дробів.

Єгиптяни ставили ієрогліф

D21

(ер, «[один] з» або ре, рот) над числом для позначення одиничного дробу в звичайному записі, а в священних текстах використовували лінію. Наприклад:

D21
Z1 Z1 Z1
 
D21
V20
 

У них також були спеціальні символи для дробів 1/2, 2/3 і 3/4, якими можна було записувати також інші дроби (більші за 1/2).

Aa13
 
D22
 
D23
 

Єгиптяни також використовували і інші форми запису, основані на ієрогліфі Око Гора для представлення спеціального набору дробів виду 1/2k (для k = 1, 2, …, 6), тобто, двоелементних раціональних чисел. Такі дроби використовувалися разом з іншими формами записи єгипетських дробів для того, щоб поділити хекат (~ 4,785 л), основну міру обсягу в Давньому Єгипті. Цей комбінований запис також використовувався для вимірювання об'єму зерна, хліб а та пива. Якщо після запису кількості у вигляді дробу Ока Гору залишався якийсь залишок, його записували в звичайному вигляді кратно ро, одиниці виміру, рівний 1/320 Хекат.

Наприклад, так:
D21
V1 V1 V1
V20 V20
V20 Z1
 

При цьому "рот " містився перед усіма ієрогліфами.

Античність і СередньовіччяРедагувати

Єгипетські дроби продовжували використовуватися в стародавній Греції і згодом математиками всього світу до Середньовіччя, незважаючи на наявні до них зауваження стародавніх математиків (наприклад, Клавдій Птолемей говорив про незручність використання єгипетських дробів в порівнянні з Вавилонською системою. Важливу роботу в дослідженні єгипетських дробів провів математик XIII століття Фібоначчі у своїй праці «Liber Abaci».

Основна тема «Liber Abaci» — обчислення, що використовують десяткові і звичайні дроби, що витіснили з часом єгипетські дроби. Фібоначчі використовував складний запис дробів, що включав запис чисел зі змішаною підставою і запис у вигляді сум дробів, часто використовувалися і єгипетські дроби. Також у книзі були наведені алгоритми перекладу зі звичайних дробів в єгипетські.

Алгоритм ФібоначчіРедагувати

Перший метод розкладання довільного дробу на єгипетські складові описав Фібоначчі в XIII столітті. У сучасному записі його алгоритм можна викласти таким чином.

1. Дріб   розкладається на 2 доданки:

 

Тут   — частка від ділення n на m, округлене до цілого в більшу сторону, а   — (додатня) остача від ділення -n на m.

2. Перший доданок у правій частині вже має вигляд єгипетського дробу. З формули видно, що чисельник другого доданка строго менше, ніж у вихідного дробу. Аналогічно, за тією ж формулою, розкладемо другий доданок і продовжимо цей процес, поки не отримаємо доданок з чисельником 1.

Метод Фібоначчі завжди сходиться після кінцевого числа кроків і дає розкладання, яке шукали. Приклад:

 

Але отримане таким методом розкладання може виявитися не найкоротшим. Приклад його невдалого застосування:

 

в той час як більш досконалі алгоритми призводять до розкладання:

 

Розклад ЕнгеляРедагувати

Докладніше: Розклад Енгеля

Розклад Енгеля є ще одним методом представлення чисел у вигляді єгипетського дробу. Існує кілька алгоритмів виконання такого розкладу.

Сучасна теорія чиселРедагувати

Сучасні математики продовжують досліджувати ряд задач, пов'язаних з єгипетськими дробом.

  • В кінці минулого століття було дано оцінки максимального знаменника і довжини розкладання довільного дробу в єгипетські. Дріб x/y має розкладання в єгипетські дроби з максимальним знаменником не більше
 

і з числом доданків не більше:

 
  • Гіпотеза Ердеша - Грехема[en] стверджує, що для всякої розмальовки цілих чисел більших 1 в r > 0 кольорів існує кінцеве однокольорове підмножина S цілих чисел, таких, що
 

Ця гіпотеза доведена Ернестом Крутом[en] в 2003 році.

Відкриті проблемиРедагувати

Єгипетські дроби ставлять ряд важких і донині невирішених математичних проблем.

 
Комп'ютерні експерименти показують, що гіпотеза вірна для всіх n ≤ 1014, але доказ поки не знайдено. Узагальнення цієї гіпотези стверджує, що для будь-якого позитивного k існує N таке, що для всіх nN існує розкладання
 
Ця гіпотеза належить Анджею Шинцелю[en].

ЛітератураРедагувати

ПосиланняРедагувати