Формула Лейбніца для визначників

Версія від 09:01, 8 листопада 2013, створена Igor Yalovecky (обговорення | внесок) (Створена сторінка: '''Формула Лейбніца''' виражає визначник квадратної матриці :<math>A ...)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)

Формула Лейбніца виражає визначник квадратної матриці

через перестановки елементів матриці. Для n×n матриці формула така

де sgn — парність перестановки у групі перестановок Sn, яка повертає +1 і −1 для парних і непарних, відповідно.

Інший поширений запис цієї формули із використанням символу Леві-Чивіти і нотації Ейнштена

може бути більш знайомим для фізиків.

Пряме обчислення формули Лейбніца з означення потребує дій, тобто кількість операцій асимптотично пропорційна до n факторіал — бо n! це число перестановок порядку n. Це непрактично складно для великих n. Натомість, визначник можна обчислити за O(n3) дій, використовуючи LU розклад матриці (зазвичай через метод Гауса або подібний), в цьому випадку а визначники трикутних матриць L і U є просто добутками їх діагональних елементів. (Однак, у практичному застосуванні чисельної лінійної алгебри, явний розрахунок визначника необхідний рідко.)