В математичному аналізі, теорема Радемахера, названа на честь Ганса Радемахера, стверджує, що якщо U — відкрита множина і

 — відображення Ліпшиця, то f є диференційованим майже всюди на U (тобто точки U в яких f не є диференційоване утворюють множину міра Лебега якої рівна нулю).

ПосиланняРедагувати

  Це незавершена стаття з математики.
Ви можете допомогти проекту, виправивши або дописавши її.