Оператор набла у різних системах координат: відмінності між версіями

нема опису редагування
Немає опису редагування
Немає опису редагування
* у циліндричних координатах: <math> {\partial i_\rho \over \partial \varphi}=i_\varphi</math> і <math> {\partial i_\varphi \over \partial \varphi}=-i_\rho</math>;
* у сферичних координатах: <math> {\partial i_r \over \partial \theta}=i_\theta</math>, <math> {\partial i_\theta \over \partial \theta}=-i_r</math>, <math> {\partial i_r \over \partial \varphi}=i_\varphi \sin \theta</math>, <math> {\partial i_\theta \over \partial \varphi}=i_\varphi \cos \theta</math> і <math> {\partial i_\varphi \over \partial \varphi}=-i_r \sin \theta-i_\vartheta \cos \theta</math>.
Наприклад, у таблиці, наведеній у статті запис дивергенції у циліндричних координатах отриманоотмано наступним чином:
 
<math> \nabla \cdot\mathbf{A}=i_\rho\cdot {\partial \over \partial \rho}(i_\rho A_\rho
 
== Див. також: ==
Оператор набла в различных системах координат* [[Оператор набла в различных системах координат]]
<ref>{{Cite web|url=https://ru.wikipedia.org/wiki/%D0%9E%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%BD%D0%B0%D0%B1%D0%BB%D0%B0_%D0%B2_%D1%80%D0%B0%D0%B7%D0%BB%D0%B8%D1%87%D0%BD%D1%8B%D1%85_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0%D1%85_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82|title=Оператор набла в различных системах координат|last=|first=|date=|website=|publisher=|language=|accessdate=}}</ref>
 
{{Дифференциальное исчисление}}
9

редагувань