Розподіл Максвелла — Больцмана

Версія від 19:44, 2 жовтня 2012, створена Ahonc (обговорення | внесок) (Ahonc перейменував сторінку з Розподіл Больцмана на Розподіл Максвелла — Больцмана: правопис, §121, п.12)

Розпо́діл Ма́ксвелла-Бо́льцмана визначає ймовірність того, що частинка ідеального газу перебуває в стані з певною енергією.

Ймовірність того, що частинка перебуває в стані з енергією згідно з розподілом Больцмана визначається формулою:

,

де μ — хімічний потенціал, T — температура, kB — стала Больцмана.

Хімічний потенціал μ визначається з умови

де N — число частинок.

Розподіл Больцмана справедливий тільки в тих випадках, коли . Ця умова реалізується при високих температурах.

Граничний випадок квантовомеханічних розподілів

В квантовій статистиці розподіли для ферміонів і бозонів мають різний вигляд і різні властивості. Проте при високій температурі, коли ймовірність знайти частку в будь-якому стані набагато менша за одиницю, як розподіл Фермі-Дірака так і розподіл розподіл Бозе-Ейнштейна переходять в розподіл Больцмана.

Розподіл Больцмана в класичній статистиці

В класичній статистиці частка ідеального газу має лише кінетичну енергію.

Число часток з імпульсами в проміжку   визначається формулою:

 ,

де m — маса частки.

У випадку коли дана формула виражена через швидкості, а не через імпульси, вона носить назву розподілу Максвелла

 .

Розподіл Больцмана в зовнішньому потенціальному полі

У випадку, коли частки ідеального газу перебувають у зовнішньому полі з потенціалом  , це збільшує їхню енергію. В такому випадку, розподіл Больцмана визначає залежну від координати густину часток:

 .

Зокрема, у випадку газу в полі тяжіння Землі це співвідношення визначає барометричну формулу

 .

Аналогічні формули справедливі для розподілу густини носіїв заряду (електронів чи дірок) у електричному полі в напівпровідникових приладах.

Див. також

Джерела

  • Ландау Л.Д., Лившиц Е.М. (1976). Теоретическая физика. т. V. Статистическая физика. Часть 1. (російська). Москва: Наука.