Метричний простір

безліч, забезпечене метрикою (функцією відстані)

Метричний простір — це пара (), яка складається з деякої множини елементів і відстані , визначеної для будь-якої пари елементів цієї множини.

Формальне визначення

Метричним простором називається пара ( ), яка складається з деякої множини   елементів і відстані  , а саме однозначної невідємної, дійсної функції  , визначеної для x,y\in\mathbb{R}\sub

Топологія породжена метрикою

Кожна метрика породжує топологію базою, що складається з відкритих куль метричного простору. Породжена топологія задовільняє багатьом хорошим умовам, як наприклад всі аксіоми віддільності.

Приклади

Дивіться також

Література

  1. С. Т. Завало (1972). Елементи аналізу. Алгебра многочленів. Київ: Радянська школа. 
  2. П. І. Голод; А. У. Клімик (1992). Математичні основи теорії симетрій (українська). Київ: Наукова Думка. ISBN 5-12-002743-1.