Відкрити головне меню

Конус

геометричне тіло, отримане шляхом об'єднання всіх променів, що виходять з однієї точки — вершини конуса, і таких що проходять через довільну плоску поверхню
Прямий і похилий конуси

Ко́нус (лат. conus від дав.-гр. κώνος — «шпичак шолома», «шишка»)[1] — геометричне тіло, отримане шляхом об'єднання всіх променів, що виходять з однієї точки — вершини конуса, і таких що проходять через довільну плоску криву. Іноді конусом називають частину такого тіла, отриману об'єднанням усіх відрізків, що з'єднують вершину і точки пласкої поверхні (яку в такому випадку називають основою конуса, а конус називають таким, що спирається на дану поверхню). Надалі буде розглядатися саме цей випадок, якщо не сказано про інше.

За ДСТУ: конус — узагальнений термін, під яким залежно від конкретних умов розуміють конічну поверхню, конічну деталь чи конічний елемент[2].

Відрізок, опущений перпендикулярно з вершини на площину основи (а також його довжина), називається висотою конуса. Якщо площа основи має скінченне значення, то об'єм конуса також має скінченне значення і дорівнює третині добутку висоти на площу основи. Таким чином всі конуси, що спираються на дану основу, і мають вершину в площині, паралельній цій основі, мають рівний об'єм, оскільки їх висоти рівні. Якщо основою конуса є многокутник, тоді конус стає пірамідою. Таким чином піраміди є підмножиною конусів.

Відрізок, що сполучає вершину конуса з точкою границі його основи називається твірною конуса. Множина всіх твірних конуса називається бічною поверхнею конуса.

Якщо основа конуса має центр симетрії (наприклад, є еліпсом) і ортогональна проекція вершини конуса на його основу збігається з цим центром, то конус називається прямим. При цьому пряма, що сполучає вершину конуса з центром його основи називається віссю конуса. Якщо ж ортогональна проекція вершини не збігається з центром основи, то такий конус називається косим.

Зміст

Конус обертанняРедагувати

Якщо основою конуса є круг, то конус називають круговим. Прямий круговий конус (часто його називають просто конусом) можна отримати обертанням прямокутного трикутника навколо одного з катетів, який таким чином стане віссю конуса. Конус обертання в прямокутній системі координат описується системою нерівностей:

 
де  

Перетин площини з прямим круговим конусом є одним з конічних перерізів (в невироджених випадках — еліпсом, параболою чи гіперболою, в залежності від розміщення січної площини).

Частина конуса, що лежить між основою і площиною, паралельною до основи і знаходиться між вершиною і основою, називається зрізаним конусом.

Конус, що спирається на еліпс, гіперболу чи параболу називається відповідно еліптичним, гіперболічним чи параболічним конусом (останні два мають нескінченний об'єм).

Площа поверхні конусаРедагувати

 
Прямий круговий конус

Повна площа прямого кругового конуса

  ,

де r та l — радіус кола основи та довжина твірної бічної поверхні відповідно.

Площа бічної поверхні прямого кругового конуса

 ,

де r та l — радіус кола основи та довжина твірної бічної поверхні відповідно.

Об'єм конусаРедагувати

У загальному випадку:

 ,

де S — площа основи, h — висота конуса.

Об'єм кругового конуса, відповідно:

 ,

Формулу об'єма легко отримати із використанням інтегрального числення. Ми знаємо, що об'єм твердого тіла дорівнює інтегралу площі його перерізу вздовж певної осі. Отже, з точністю до сталої, це інтеграл  

Кут конусаРедагувати

Цей термін означає кут   при вершині в осьовому перерізі конуса.

 

Об'єм кулі, описаної навколо прямого кругового конусаРедагувати

 
де   — твірна конуса;

  — радіус основи конуса.

Див. такожРедагувати

ПриміткиРедагувати

  1. Етимологічний словник української мови : у 7 т. : т. 2 : Д — Копці / Ін-т мовознавства ім. О. О. Потебні АН УРСР ; укл.: Н. С. Родзевич та ін ; редкол.: О. С. Мельничук (гол. ред.) та ін. — К. : Наукова думка, 1985. — 572 с.
  2. ДСТУ 2499-94 Конуси та конічні з'єднання. Терміни та визначення.

ДжерелаРедагувати

  • Геометрія. 10-11 класи [Текст]: пробний підручник / Афанасьєва О. М. [та ін.]. — Тернопіль: Навчальна книга- Богдан, 2003. — 264 с. — ISBN 966-692-161-8