Замкнута множина
Версія від 09:50, 30 грудня 2015, створена Олюсь (обговорення | внесок)
За́мкнута множина́ — підмножина простору доповнення до якої відкрита.
Означення
Нехай дано топологічний простір . Множина називаєтся замкнутою відносно топології , якщо існує відкрита множина така що
Приклади
- Весь простір , а також порожня множина завжди замкнуті.
- Інтервал замкнутий в стандартній топології на дійсній прямій, бо його доповнення відкрите.
- Множина замкнута в просторі раціональних чисел , але не замкнута в просторі всіх дійсних чисел .
Властивості
Із аксіом означення топології випливає:
- перетин будь-якого набору замкнутих множин є замкнутою множиною
- об'єднання скінченної кількості замкнутих множин є замкнутою множиною
Інші властивості:
- множина може бути ні замкнутою ні відкритою одночасно, як наприклад напіввідкритий інтервал в , (при стандартній топології на )
- множина може бути і відкритою і замкнутою водночас — такими є всі підмножини в дискретній топології (де топологія — набір всіх підмножин даної множини)
Див. також
Література
- Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. — 4-е изд. — Москва : Наука, 1976. — 544 с. — ISBN 5-9221-0266-4.(рос.)
- С. Т. Завало (1972). Елементи аналізу. Алгебра многочленів. Київ: Радянська школа.
- Фихтенгольц (1954). Основы математического анализа. Москва: Радянська школа.