Аксіома регулярності
Аксіома регулярності (аксіома фундування) — одна з аксіом теорії множин Цермело-Френкеля (ZF) (з 1930). Спочатку була зформульована фон Нейманом для теорії множин Неймана-Бернайса-Геделя (NBG) (в 1925 ).
В будь-якій непорожній множині А є елемент B, що перетин А та B є порожньою множиною:
Якщо ввести операцію перетину множин , то формулу можна спростити:
Наслідком цієї аксіоми є твердження, що не існує множини, яка є елементом самої себе.
Аксіома регулярності найменш корисна аксіома ZF, оскільки всі результати можуть бути отримані і без неї, хоча вона інтенсивно використовується результатів про цілковий порядок та ординали.