Відмінності між версіями «Інтеграл Рімана»

[неперевірена версія][перевірена версія]
 
(Не показані 15 проміжних версій 8 користувачів)
Рядок 1: Рядок 1:
  +
{{Calculus}}
 
[[Файл:Riemann_integral.pdf|right|thumb|Інтеграл Рімана функції ''f''(''x'') по відрізку [''a'', ''b''] дорівнює сумі площ фігур між графіком функції ''f''(''x''), віссю ''Ox'' і прямими {''x''=''a''} та {''x''=''b''}, в якій доданки, що відповідають фігурам в нижній півплощині, беруться зі знаком «−»]]
 
[[Файл:Riemann_integral.pdf|right|thumb|Інтеграл Рімана функції ''f''(''x'') по відрізку [''a'', ''b''] дорівнює сумі площ фігур між графіком функції ''f''(''x''), віссю ''Ox'' і прямими {''x''=''a''} та {''x''=''b''}, в якій доданки, що відповідають фігурам в нижній півплощині, беруться зі знаком «−»]]
'''Інтегра́л Рі́мана''' — одне з найважливіших понять [[математичний аналіз|математичного аналізу]], є узагальненням поняття [[сума (математика)|суми]], яке знаходить широке застосування в багатьох галузях [[математика|математики]]. Був уведений [[Бернгард Ріман|Бернгардом Ріманом]] в [[1854]] році, і є одною з перших формалізації поняття [[інтеграл]]у.
+
'''Інтегра́л Рі́мана''' — одне з найважливіших понять [[математичний аналіз|математичного аналізу]], є узагальненням поняття [[сума (математика)|суми]], яке знаходить широке застосування в багатьох галузях [[математика|математики]]. Був уведений [[Бернгард Ріман|Бернгардом Ріманом]] в [[1854]] році, і є однією з перших формалізацій поняття [[інтеграл]]у.
   
 
== Геометрична інтерпретація ==
 
== Геометрична інтерпретація ==
Ріман формалізував поняття інтегралу, розроблене [[Ісаак Ньютон|Ньютоном]] та [[Ґотфрід Вільгельм Лейбніц|Лейбніцем]], як [[площа|площу]] фігури, яка обмежена [[графік функції|графіком функції]] та віссю [[абсциса|абсцис]]. Для цього він розглянув ступінчасті фігури, які складаються з великої кількості вертикальних [[прямокутник]]ів, отриманих при [[розбиття відрізка|розбитті відрізка]] інтегрування (див. Рис.).
+
Ріман формалізував поняття інтегралу, розроблене [[Ісаак Ньютон|Ньютоном]] та [[Ґотфрід Вільгельм Лейбніц|Лейбніцем]], як [[площа|площу]] фігури, яка обмежена [[графік функції|графіком функції]] та віссю [[абсциса|абсцис]]. Для цього він розглянув ступінчасті фігури, які складаються з великої кількості вертикальних [[прямокутник]]ів, отриманих при [[розбиття відрізка|розбитті відрізка]] інтегрування.
   
 
Нехай функція ''f'' : [''a'', ''b'']→''R'' є [[неперервна функція|неперервною]] і невід'ємною на відрізку [''a'', ''b'']. Фігура, обмежена графіком цієї функції, [[відрізок|відрізком]] [''a'', ''b''] і прямими {''x = a''} та {''x = b''}, називається ''криволінійною трапецією''.
 
Нехай функція ''f'' : [''a'', ''b'']→''R'' є [[неперервна функція|неперервною]] і невід'ємною на відрізку [''a'', ''b'']. Фігура, обмежена графіком цієї функції, [[відрізок|відрізком]] [''a'', ''b''] і прямими {''x = a''} та {''x = b''}, називається ''криволінійною трапецією''.
Рядок 12: Рядок 13:
 
# Смугу криволінійної трапеції з основою [''x''<sub>''k''</sub>, ''x''<sub>''k''+1</sub>] замінимо прямокутником &Pi;<sub>''k''</sub>.
 
# Смугу криволінійної трапеції з основою [''x''<sub>''k''</sub>, ''x''<sub>''k''+1</sub>] замінимо прямокутником &Pi;<sub>''k''</sub>.
   
В результаті отримаємо ступінчасту фігуру, складену з прямокутників (див. Рис.).
+
В результаті отримаємо ступінчасту фігуру, складену з прямокутників.
   
 
Очевидно, що чим менші відрізки [''x''<sub>''k''</sub>, ''x''<sub>''k''+1</sub>] розбиття, тим більше ступінчаста фігура наближається до криволінійної трапеції.
 
Очевидно, що чим менші відрізки [''x''<sub>''k''</sub>, ''x''<sub>''k''+1</sub>] розбиття, тим більше ступінчаста фігура наближається до криволінійної трапеції.
   
{{remark}} Якщо для розбиття λ довжини усіх відрізків однакові (тобто Δ''x''<sub>''k''</sub> := ''x''<sub>''k''+1</sub> − ''x''<sub>''k''</sub> = Δ''x'' =: (''b''&nbsp;−&nbsp;''a'')&nbsp;/&nbsp;''n'' для всіх ''k'' = 0,…,&nbsp;''n''&nbsp;−&nbsp;1), то таке розбиття називається ''рівномірним''.
+
'''Зауваження.''' Якщо для розбиття λ довжини усіх відрізків однакові (тобто Δ''x''<sub>''k''</sub> := ''x''<sub>''k''+1</sub> − ''x''<sub>''k''</sub> = Δ''x'' =: (''b''&nbsp;−&nbsp;''a'')&nbsp;/&nbsp;''n'' для всіх ''k'' = 0,…,&nbsp;''n''&nbsp;−&nbsp;1), то таке розбиття називається ''рівномірним''.
</div>
 
   
{{definition}} ''Діаметром'' (''розміром'', ''дрібністю'') ''розбиття'' &lambda; = {''x''<sub>0</sub>, ''x''<sub>1</sub>,…, ''x''<sub>''n''</sub>} називається число |&lambda;| = max&nbsp;{&Delta;''x<sub>k</sub>'', 0 ≤ ''k'' ≤ ''n'' − 1}.
+
'''Означення.''' ''Діаметром'' (''розміром'', ''дрібністю'') ''розбиття'' &lambda; = {''x''<sub>0</sub>, ''x''<sub>1</sub>,…, ''x''<sub>''n''</sub>} називається число |&lambda;| = max&nbsp;{&Delta;''x<sub>k</sub>'', 0 ≤ ''k'' ≤ ''n'' − 1}.
</div>
 
   
{{definition}} Величина
+
'''Означення.''' Величина
 
:<math>S(f, \, \lambda, \, \{c_i|\lambda\})=\sum_{k=1}^{n} f(c_{k}) \Delta x_{k},</math>
 
:<math>S(f, \, \lambda, \, \{c_i|\lambda\})=\sum_{k=1}^{n} f(c_{k}) \Delta x_{k},</math>
 
називається ''інтегральною сумою'' для функції ''f'' та точок {''c''<sub>''i''</sub> | &lambda;}, які відповідають розбиттю &lambda;.
 
називається ''інтегральною сумою'' для функції ''f'' та точок {''c''<sub>''i''</sub> | &lambda;}, які відповідають розбиттю &lambda;.
</div>
 
   
 
Інтегральна сума дорівнює площі ступінчастої фігури, і її природно вважати наближеним значенням площі криволінійної трапеції. А за площу криволінійної трапеції природно прийняти границю чисел ''S''(''f'', &lambda;, {''c''<sub>''i''</sub> | &lambda;}), коли |&lambda;|&nbsp;→&nbsp;0:
 
Інтегральна сума дорівнює площі ступінчастої фігури, і її природно вважати наближеним значенням площі криволінійної трапеції. А за площу криволінійної трапеції природно прийняти границю чисел ''S''(''f'', &lambda;, {''c''<sub>''i''</sub> | &lambda;}), коли |&lambda;|&nbsp;→&nbsp;0:
Рядок 34: Рядок 32:
 
== Означення інтеграла Рімана==
 
== Означення інтеграла Рімана==
 
[[Файл:Integral_sum.pdf|thumb|upright=1.5|Чим дрібніший діаметр розбиття λ, тим ближче значення інтегральної суми до значення інтеграла Рімана]]
 
[[Файл:Integral_sum.pdf|thumb|upright=1.5|Чим дрібніший діаметр розбиття λ, тим ближче значення інтегральної суми до значення інтеграла Рімана]]
{{definition|інтеграла Рімана}} Нехай функція ''f'' : [''a'',&nbsp;''b''] → ''R'' (''a'' < ''b'') та
+
'''Означення''' (інтеграла Рімана). Нехай функція ''f'' : [''a'',&nbsp;''b''] → ''R'' (''a'' < ''b'') та
 
* для довільного розбиття &lambda; відрізка [''a'', ''b''] та відповідного йому набору точок {''c''<sub>''i''</sub>&nbsp;|&nbsp;&lambda;} існує скінченна границя інтегральних сум ''S''(''f'',&nbsp;&lambda;,&nbsp;{''c''<sub>''i''</sub>&nbsp;|&nbsp;&lambda;}) при |&lambda;|&nbsp;→&nbsp;0,
 
* для довільного розбиття &lambda; відрізка [''a'', ''b''] та відповідного йому набору точок {''c''<sub>''i''</sub>&nbsp;|&nbsp;&lambda;} існує скінченна границя інтегральних сум ''S''(''f'',&nbsp;&lambda;,&nbsp;{''c''<sub>''i''</sub>&nbsp;|&nbsp;&lambda;}) при |&lambda;|&nbsp;→&nbsp;0,
 
* границя інтегральних сум ''S''(''f'',&nbsp;&lambda;,&nbsp;{''c''<sub>''i''</sub>&nbsp;|&nbsp;&lambda;}) не залежить від розбиття &lambda; і вибору точок ''c''<sub>''i''</sub>.
 
* границя інтегральних сум ''S''(''f'',&nbsp;&lambda;,&nbsp;{''c''<sub>''i''</sub>&nbsp;|&nbsp;&lambda;}) не залежить від розбиття &lambda; і вибору точок ''c''<sub>''i''</sub>.
Рядок 42: Рядок 40:
   
 
У цьому випадку функція ''f''(''x'') називається ''інтегровною (за Ріманом)'' на [''a'',&nbsp;''b'']; в протилежному випадку ''f''(''x'') є ''неінтегровною (за Ріманом)'' на відрізку [''a'',&nbsp;''b''].
 
У цьому випадку функція ''f''(''x'') називається ''інтегровною (за Ріманом)'' на [''a'',&nbsp;''b'']; в протилежному випадку ''f''(''x'') є ''неінтегровною (за Ріманом)'' на відрізку [''a'',&nbsp;''b''].
</div>
 
   
{{terminology}} Функція ''f'' називається ''підінтегральною функцією'', ''f(x)dx''&nbsp;— ''підінтегральним виразом'', ''x''&nbsp;— ''змінною інтегрування'', числа ''a'' та ''b''&nbsp;— ''нижньою'' та ''верхньою межами інтегрування'' відповідно.
+
'''Термінологія.''' Функція ''f'' називається ''підінтегральною функцією'', ''f(x)dx''&nbsp;— ''підінтегральним виразом'', ''x''&nbsp;— ''змінною інтегрування'', числа ''a'' та ''b''&nbsp;— ''нижньою'' та ''верхньою межами інтегрування'' відповідно.
</div>
 
   
{{denotation}} Множину інтегровних за Ріманом функцій на відрізку [''a'',&nbsp;''b''] позначають ''R''([''a'',&nbsp;''b'']).
+
'''Позначення.''' Множину інтегровних за Ріманом функцій на відрізку [''a'',&nbsp;''b''] позначають ''R''([''a'',&nbsp;''b'']).
</div>
 
   
 
'''Необхідною умовою інтегровності функції за Ріманом є її обмеженість:''' якщо функція ''f''(''x'') необмежена на відрізку [''a'',&nbsp;''b''], то границя інтегральних сум для цієї функції буде рівна ∞.
 
'''Необхідною умовою інтегровності функції за Ріманом є її обмеженість:''' якщо функція ''f''(''x'') необмежена на відрізку [''a'',&nbsp;''b''], то границя інтегральних сум для цієї функції буде рівна ∞.
Рядок 99: Рядок 94:
 
=== Критерій Дарбу інтегровності функції ===
 
=== Критерій Дарбу інтегровності функції ===
 
{{Докладніше|Критерій Дарбу}}
 
{{Докладніше|Критерій Дарбу}}
[[Файл:Darboux_sums.pdf|thumb|upright=1.5|Суми Дарбу для рівномірного розбиття λ: нижня (ліворуч) та верхня (праворуч)
+
[[Файл:Darboux_sums.pdf|thumb|upright=1.5|Суми Дарбу для рівномірного розбиття λ: нижня (зліва) та верхня (справа)
 
]]
 
]]
 
Нижня та верхня суми Дарбу́ для функції ''f''(''x'') та розбиття λ&nbsp;— це інтегральні суми, в яких відповідні точки {''c''<sub>''i''</sub>&nbsp;|&nbsp;&lambda;} обираються як точні нижня та верхня межі функції ''f''(''x'') відповідно.
 
Нижня та верхня суми Дарбу́ для функції ''f''(''x'') та розбиття λ&nbsp;— це інтегральні суми, в яких відповідні точки {''c''<sub>''i''</sub>&nbsp;|&nbsp;&lambda;} обираються як точні нижня та верхня межі функції ''f''(''x'') відповідно.
   
{{definition}} Інтегральна сума для розбиття λ, для якої відповідні точки {''c''<sub>''i''</sub>&nbsp;|&nbsp;&lambda;} вибираються з умови ''c''<sub>''i''</sub> = inf<sub>[''x''<sub>''i''</sub>, ''x''<sub>''i''+1</sub>]</sub> ''f''(''x''), називається ''нижньою сумою Дарбу'' для функції ''f'' та розбиття λ і позначається одним із символів ''L''(''f'', λ) (від англ. ''lower''&nbsp;— «нижній») або ''s''(''f'', λ).
+
'''Означення.''' Інтегральна сума для розбиття λ, для якої відповідні точки {''c''<sub>''i''</sub>&nbsp;|&nbsp;&lambda;} вибираються з умови ''c''<sub>''i''</sub> = inf<sub>[''x''<sub>''i''</sub>, ''x''<sub>''i''+1</sub>]</sub> ''f''(''x''), називається ''нижньою сумою Дарбу'' для функції ''f'' та розбиття λ і позначається одним із символів ''L''(''f'', λ) (від англ. ''lower''&nbsp;— «нижній») або ''s''(''f'', λ).
 
<!--
 
<!--
 
<math>
 
<math>
Рядок 109: Рядок 104:
 
</math>
 
</math>
 
-->
 
-->
</div>
 
   
{{definition}} Інтегральна сума для розбиття λ, для якої відповідні точки {''c''<sub>''i''</sub>&nbsp;|&nbsp;&lambda;} вибираються з умови ''c''<sub>''i''</sub> = sup<sub>[''x''<sub>''i''</sub>, ''x''<sub>''i''+1</sub>]</sub> ''f''(''x''), називається ''верхньою сумою Дарбу'' для функції ''f'' та розбиття λ і позначається одним із символів ''U''(''f'', λ) (від англ. ''upper''&nbsp;— «верхній») або ''S''(''f'', λ).
+
'''Означення.''' Інтегральна сума для розбиття λ, для якої відповідні точки {''c''<sub>''i''</sub>&nbsp;|&nbsp;&lambda;} вибираються з умови ''c''<sub>''i''</sub> = sup<sub>[''x''<sub>''i''</sub>, ''x''<sub>''i''+1</sub>]</sub> ''f''(''x''), називається ''верхньою сумою Дарбу'' для функції ''f'' та розбиття λ і позначається одним із символів ''U''(''f'', λ) (від англ. ''upper''&nbsp;— «верхній») або ''S''(''f'', λ).
</div>
 
   
 
<!-- це в цій статті не знадобилось
 
<!-- це в цій статті не знадобилось
{{definition}} ''Нижнім інтегралом Дарбу'' для функціїї ''f''(''x'') по відрізку [''a'',&nbsp;''b''] називається число
+
'''Означення.''' ''Нижнім інтегралом Дарбу'' для функціїї ''f''(''x'') по відрізку [''a'',&nbsp;''b''] називається число
 
: <math> I_*(f) = \sup_{\lambda} s(f, \, \lambda),
 
: <math> I_*(f) = \sup_{\lambda} s(f, \, \lambda),
 
</math>
 
</math>
Рядок 122: Рядок 115:
 
</math>
 
</math>
 
Тут inf та sup беруться по усіх можливих розбиттях λ відрізку [''a'',&nbsp;''b''].
 
Тут inf та sup беруться по усіх можливих розбиттях λ відрізку [''a'',&nbsp;''b''].
</div>
 
 
-->
 
-->
 
За допомогою верхньої та нижньої сум Дарбу можна дати критерій інтегровності функції за Ріманом.
 
За допомогою верхньої та нижньої сум Дарбу можна дати критерій інтегровності функції за Ріманом.
   
{{plain theorem}} Нехай ''f'' : [''a'',&nbsp;''b''] → ''R''&nbsp;— обмежена функція. Функція ''f'' &isin; ''R''([''a'',&nbsp;''b'']) тоді і лише тоді, коли
+
'''Теорема.''' Нехай ''f'' : [''a'',&nbsp;''b''] → ''R''&nbsp;— обмежена функція. Функція ''f'' &isin; ''R''([''a'',&nbsp;''b'']) тоді і лише тоді, коли
 
: <math>
 
: <math>
 
\lim_{|\lambda|\to 0} (S(f, \, \lambda) - s(f, \, \lambda)) = 0.
 
\lim_{|\lambda|\to 0} (S(f, \, \lambda) - s(f, \, \lambda)) = 0.
 
</math>
 
</math>
</div>
 
   
 
=== Класи інтегровних за Ріманом функцій ===
 
=== Класи інтегровних за Ріманом функцій ===
{{plain theorem|про інтегровність неперервної функції}} ''C''([''a'',&nbsp;''b'']) ⊂ ''R''([''a'',&nbsp;''b'']), тобто кожна неперервна на відрізку [''a'',&nbsp;''b''] функція є інтегровною за Ріманом на цьому відрізку.
+
'''Теорема''' (про інтегровність неперервної функції). ''C''([''a'',&nbsp;''b'']) ⊂ ''R''([''a'',&nbsp;''b'']), тобто кожна неперервна на відрізку [''a'',&nbsp;''b''] функція є інтегровною за Ріманом на цьому відрізку.
</div>
 
   
{{plain theorem|про інтегровність монотонної функції}} Кожна монотонна на відрізку [''a'',&nbsp;''b''] функція є інтегровною за Ріманом на цьому відрізку.
+
'''Теорема''' (про інтегровність монотонної функції). Кожна монотонна на відрізку [''a'',&nbsp;''b''] функція є інтегровною за Ріманом на цьому відрізку.
</div>
 
   
{{plain theorem|про інтегровність функції зі скінченною кількістю точок розриву}} Нехай ''f'' : [''a'',&nbsp;''b''] → ''R'' задовольняє умовам
+
'''Теорема''' (про інтегровність функції зі скінченною кількістю точок розриву). Нехай ''f'' : [''a'',&nbsp;''b''] → ''R'' задовольняє умовам
 
# функція ''f''(''x'') обмежена на [''a'',&nbsp;''b''];
 
# функція ''f''(''x'') обмежена на [''a'',&nbsp;''b''];
 
# ''f'' &isin; ''C''([''a'',&nbsp;''b''] \ {''z''<sub>1</sub>,&nbsp;''z''<sub>2</sub>,…,&nbsp;''z''<sub>n</sub>}).
 
# ''f'' &isin; ''C''([''a'',&nbsp;''b''] \ {''z''<sub>1</sub>,&nbsp;''z''<sub>2</sub>,…,&nbsp;''z''<sub>n</sub>}).
   
 
Тоді ''f'' &isin; ''R''([''a'',&nbsp;''b'']).
 
Тоді ''f'' &isin; ''R''([''a'',&nbsp;''b'']).
  +
</div>
 
  +
'''Приклад''' (неінтегровної обмеженої функції). Покажемо, що [[функція Діріхле]]
  +
  +
: <math> D(x) := \begin{cases} 1, & x\in\Q \\ 0, & x\in\R \setminus\Q \end{cases}</math>
  +
  +
не інтегровна на довільному відрізку [''a'', ''b''] ⊂ ''R''. Тут ''Q'' — це множина [[Раціональні числа|раціональних]] чисел, а ''R'' — множина [[дійсні числа|дійсних чисел]].
  +
  +
На довільному відрізку [α, β] ⊂ ''R'' знайдуться як
  +
[[Раціональні числа|раціональна]], так і [[Ірраціональні числа|ірраціональна]] точки. Тому при довільному розбитті λ відрізка [''a'', ''b''] маємо
  +
  +
: <math>
  +
s(f, \, \lambda) = 0, \qquad S(f, \, \lambda) = b - a,
 
</math>
  +
  +
звідки у відповідності з критерієм Дарбу інтегровності функції ''D'' ∉ ''R''([''a'', ''b'']).
   
 
== Методи обчислення інтегралів Рімана ==
 
== Методи обчислення інтегралів Рімана ==
   
{{plain theorem}} Припустимо, що функція ''f'' задовольняє умовам
+
'''Теорема.''' Припустимо, що функція ''f'' задовольняє умовам
# ''f'' &isin; ''R''[''a'',&nbsp;''b''];
+
# ''f'' &isin; ''R''([''a'',&nbsp;''b'']);
 
# ''f'' має [[первісна|первісну]] ''F'' на [''a'',&nbsp;''b''].
 
# ''f'' має [[первісна|первісну]] ''F'' на [''a'',&nbsp;''b''].
   
 
Тоді справедлива '''формула Ньютона—Лейбніца:'''
 
Тоді справедлива '''формула Ньютона—Лейбніца:'''
 
: <math> \int_{a} ^{b} f(x)\, dx = F(x) \Bigr|_{x=a}^b := F(b)-F(a), </math>
 
: <math> \int_{a} ^{b} f(x)\, dx = F(x) \Bigr|_{x=a}^b := F(b)-F(a), </math>
</div>
 
   
 
З формулою Ньютона—Лейбніца обчислення інтеграла Рімана зводиться до знаходження первісної для підінтегральної функції (див. [[Первісна#Методи знаходження первісної|методи знаходження первісної]]). Проте нею слід користуватися обережно, спочатку переконавшись у тому, чи задовільняє підінтегральна функція обом умовам теореми.
 
З формулою Ньютона—Лейбніца обчислення інтеграла Рімана зводиться до знаходження первісної для підінтегральної функції (див. [[Первісна#Методи знаходження первісної|методи знаходження первісної]]). Проте нею слід користуватися обережно, спочатку переконавшись у тому, чи задовільняє підінтегральна функція обом умовам теореми.
   
{{example}} Розглянемо інтеграл <math>\int_{-1}^{1}\frac{dx}{x^{2}}. </math> «Первісна» підінтегральної функції дорівнює ''F''(''x'') = −1/''x''. Тоді згідно з формулою Ньютона—Лейбніца шуканий інтеграл дорівнює ''F''(1) − ''F''(−1) = −2 < 0, що суперечить властивості невід'ємності інтеграла Рімана, оскільки ''f''(''x'') = 1/''x''² > 0.
+
'''Приклад.''' Розглянемо інтеграл <math>\int_{-1}^{1}\frac{dx}{x^{2}}. </math> «Первісна» підінтегральної функції дорівнює ''F''(''x'') = −1/''x''. Тоді згідно з формулою Ньютона—Лейбніца шуканий інтеграл дорівнює ''F''(1) − ''F''(−1) = −2 < 0, що суперечить властивості невід'ємності інтеграла Рімана, оскільки ''f''(''x'') = 1/''x''² > 0.
   
 
У наведеному «обчисленні» інтеграла допущено дві помилки:
 
У наведеному «обчисленні» інтеграла допущено дві помилки:
 
# даний інтеграл не існує, оскільки підінтегральна функція необмежена на відрізку [-1,&nbsp;1];
 
# даний інтеграл не існує, оскільки підінтегральна функція необмежена на відрізку [-1,&nbsp;1];
 
# функція ''f''(''x'') розривна в точці ''x'' = 0, яка належить відрізку інтегрування, тому вона не має первісної на цьому відрізку.
 
# функція ''f''(''x'') розривна в точці ''x'' = 0, яка належить відрізку інтегрування, тому вона не має первісної на цьому відрізку.
  +
</div>
 
  +
=== Обчислення інтеграла Рімана за означенням ===
  +
  +
Безпосереднє обчислення визначеного інтеграла, виходячи з його означення (як границя інтегральних сум) зазвичай досить громіздке, однак все ж таки можливе.
  +
  +
'''Приклад.''' Обчислимо інтеграл
  +
:<math> \int_{a} ^{b} \sin x\, dx. </math>
  +
  +
Покладемо ''f''(''x'') = sin ''x'', ''x'' ∈ [''a'', ''b'']. Оскільки ''f ''∈ ''C(''[''a'', ''b'']), то ''f ''∈ ''R(''[''a'', ''b'']), тому для обчислення інтегралу досить знайти границю довільної послідовності інтегральних сум. Розглянемо рівномірне розбиття λ<sub>''n''</sub> відрізку [''a'', ''b''] на ''n'' рівних частин, Δ''x'' = (''b'' − ''a'') / ''n,'' і запишемо інтегральну суму
  +
: <math> \begin{align} S(f, \, \lambda_n, \, \{c_i|\lambda_n\}) & = \Delta x \sum_{k=1}^{n} \sin (a+k\Delta x) =
  +
\\
  +
& = \frac{\Delta x}{2\sin \frac{\Delta x}{2} } \sum_{k=1}^{n} 2\sin (a+k\Delta x) \sin \frac{\Delta x}{2} =
  +
\\
  +
& = \frac{\Delta x}{2\sin \frac{\Delta x}{2} } \sum_{k=1}^{n} \Big(\cos (a+k\Delta x-\frac{1}{2}\Delta x) - \cos (a+kh+\frac{1}{2}\Delta x)\Big) =
  +
\\
  +
& = \frac{\Delta x}{2\sin \frac{\Delta x}{2}} \Big(\cos (a+\frac{1}{2}\Delta x) - \cos (b+\frac{1}{2}\Delta x)\Big). \end{align}</math>
  +
Спрямувавши |λ<sub>''n''</sub>| до нуля, отримаємо, що
  +
: <math>\begin{align}
  +
\int_{a} ^{b} \sin x\, dx & = \lim_{\Delta x \to 0} \frac{\Delta x}{2\sin \frac{\Delta x}{2}} \Big(\cos(a+ \frac{1}{2}\Delta x) - \cos (b+ \frac{1}{2}\Delta x)\Big) =
  +
\\
  +
& = \cos b - \cos a. \end{align}</math>
  +
  +
'''Приклад.''' Обчислимо інтеграл
  +
:<math> \int_{0} ^{1} e^x\, dx. </math>
  +
  +
Покладемо ''f''(''x'') = e<sup>''x''</sup>, ''x'' ∈ [0, 1]. Оскільки ''f ''∈ ''C(''[0, 1]), то ''f ''∈ ''R(''[''a'', ''b'']). Отже, у відповідності з критерієм Дарбу інтегровності функцій
  +
  +
: <math> \int_0^1 f(x) \, dx = \lim_{|\lambda_n| \rightarrow 0} s(f; \lambda_n), </math>
  +
  +
де λ<sub>''n''</sub> — рівномірне розбиття відрізка [0, 1] на ''n'' рівних частин. Отже, маємо
  +
  +
: <math> \begin{align}
  +
s(f; \, \lambda_n) & = \sum_{i=0}^{n-1} e^\frac{i}{n} \cdot \frac{1}{n} =
  +
\\
  +
& = \frac{e-1}{e^\frac{1}{n}-1} \cdot \frac{1}{n},\end{align} </math>
  +
  +
звідки випливає, що
  +
  +
: <math> \begin{align}
  +
\int_0^1 f(x) \, dx & = \lim_{n \rightarrow \infty} \frac{e-1}{e^\frac{1}{n}-1} \cdot \frac{1}{n} =
  +
\\
  +
& = e-1.
  +
\end{align} </math>
   
 
== Інтеграл Рімана як функція верхньої межі інтегрування ==
 
== Інтеграл Рімана як функція верхньої межі інтегрування ==
Рядок 179: Рядок 223:
   
 
=== Формула Лейбніца ===
 
=== Формула Лейбніца ===
{{plain theorem}} Нехай
+
'''Теорема.''' Нехай
 
# ''f'' : ℝ → ℝ iнтегровна за Рiманом по кожному вiдрiзку;
 
# ''f'' : ℝ → ℝ iнтегровна за Рiманом по кожному вiдрiзку;
 
# ''f'' має первiсну на ℝ;
 
# ''f'' має первiсну на ℝ;
Рядок 186: Рядок 230:
 
Тодi
 
Тодi
 
: <math> \frac{d}{dx} \int_{a(x)} ^{b(x)} f(u) \, du = f(b(x))b'(x) - f(a(x))a'(x),\quad x\in\R. </math>
 
: <math> \frac{d}{dx} \int_{a(x)} ^{b(x)} f(u) \, du = f(b(x))b'(x) - f(a(x))a'(x),\quad x\in\R. </math>
</div>
 
   
 
== Історія ==
 
== Історія ==
Рядок 204: Рядок 247:
 
** [[Інтеграл Стілтьєса]]
 
** [[Інтеграл Стілтьєса]]
 
** [[Невласний інтеграл]]
 
** [[Невласний інтеграл]]
  +
* [[Список об'єктів, названих на честь Бернгарда Рімана]]
   
 
== Посилання ==
 
== Посилання ==
Рядок 209: Рядок 253:
   
 
== Література ==
 
== Література ==
* {{Фихтенгольц.том2}} {{ref-ru}}
+
* {{Фихтенгольц.том2}}
 
* {{книга|автор=[[Зорич Володимир Антонович|Зорич В. А.]]|заголовок=Математический анализ, часть I|місце=М.|видавництво=Физматлит|рік=1984|сторінок=544}} {{ref-ru}}
 
* {{книга|автор=[[Зорич Володимир Антонович|Зорич В. А.]]|заголовок=Математический анализ, часть I|місце=М.|видавництво=Физматлит|рік=1984|сторінок=544}} {{ref-ru}}
   

Поточна версія на 11:33, 18 квітня 2021

Інтегра́л Рі́мана — одне з найважливіших понять математичного аналізу, є узагальненням поняття суми, яке знаходить широке застосування в багатьох галузях математики. Був уведений Бернгардом Ріманом в 1854 році, і є однією з перших формалізацій поняття інтегралу.

Інтеграл Рімана функції f(x) по відрізку [ab] дорівнює сумі площ фігур між графіком функції f(x), віссю Ox і прямими {x=a} та {x=b}, в якій доданки, що відповідають фігурам в нижній півплощині, беруться зі знаком «−»

Геометрична інтерпретаціяРедагувати

Ріман формалізував поняття інтегралу, розроблене Ньютоном та Лейбніцем, як площу фігури, яка обмежена графіком функції та віссю абсцис. Для цього він розглянув ступінчасті фігури, які складаються з великої кількості вертикальних прямокутників, отриманих при розбитті відрізка інтегрування.

Нехай функція f : [a, b]→R є неперервною і невід'ємною на відрізку [a, b]. Фігура, обмежена графіком цієї функції, відрізком [a, b] і прямими {x = a} та {x = b}, називається криволінійною трапецією. Обчислимо наближено площу цієї трапеції.

  1. Розіб'ємо відрізок [a, b] на n відрізків (n ≥ 1): a = x0 < x1 < x2 < … < xk < xk+1 < … < xn−1 < xn = b. Множина точок {x0, x1,…, xn} називається розбиттям відрізку інтегрування і позначається як λ або λ([a, b]).
  2. На кожному відрізку розбиття [xk, xk+1] довільно оберемо по одній точці ck (k = 0, 1,…, n − 1) і побудуємо вертикальні прямокутники Πk = [xkxk+1] × [0, f(ck)].
  3. Смугу криволінійної трапеції з основою [xk, xk+1] замінимо прямокутником Πk.

В результаті отримаємо ступінчасту фігуру, складену з прямокутників.

Очевидно, що чим менші відрізки [xk, xk+1] розбиття, тим більше ступінчаста фігура наближається до криволінійної трапеції.

Зауваження. Якщо для розбиття λ довжини усіх відрізків однакові (тобто Δxk := xk+1xk = Δx =: (b − a) / n для всіх k = 0,…, n − 1), то таке розбиття називається рівномірним.

Означення. Діаметром (розміром, дрібністю) розбиття λ = {x0, x1,…, xn} називається число |λ| = max {Δxk, 0 ≤ kn − 1}.

Означення. Величина

 

називається інтегральною сумою для функції f та точок {ci | λ}, які відповідають розбиттю λ.

Інтегральна сума дорівнює площі ступінчастої фігури, і її природно вважати наближеним значенням площі криволінійної трапеції. А за площу криволінійної трапеції природно прийняти границю чисел S(f, λ, {ci | λ}), коли |λ| → 0:

 

До обчислення границь такого типу приводять багато задач, наприклад, обчислення довжини пройденого шляху при прямолінійному русі за відомою швидкістю v(t) протягом часу від моменту t1 до t2.

Означення інтеграла РіманаРедагувати

 
Чим дрібніший діаметр розбиття λ, тим ближче значення інтегральної суми до значення інтеграла Рімана

Означення (інтеграла Рімана). Нехай функція f : [ab] → R (a < b) та

  • для довільного розбиття λ відрізка [a, b] та відповідного йому набору точок {ci | λ} існує скінченна границя інтегральних сум S(f, λ, {ci | λ}) при |λ| → 0,
  • границя інтегральних сум S(f, λ, {ci | λ}) не залежить від розбиття λ і вибору точок ci.

Тоді таку границю називають інтегралом Рімана функції f по відрізку [ab] і позначають символом

 

У цьому випадку функція f(x) називається інтегровною (за Ріманом) на [ab]; в протилежному випадку f(x) є неінтегровною (за Ріманом) на відрізку [ab].

Термінологія. Функція f називається підінтегральною функцією, f(x)dx — підінтегральним виразом, x — змінною інтегрування, числа a та b — нижньою та верхньою межами інтегрування відповідно.

Позначення. Множину інтегровних за Ріманом функцій на відрізку [ab] позначають R([ab]).

Необхідною умовою інтегровності функції за Ріманом є її обмеженість: якщо функція f(x) необмежена на відрізку [ab], то границя інтегральних сум для цієї функції буде рівна ∞.

Властивості інтеграла РіманаРедагувати

Властивості, пов'язані з проміжками інтегруванняРедагувати

  • Орієнтовність інтеграла: має місце поняття інтеграла Рімана по відрізку «в зворотньому напрямку», а саме для a > b вважаємо, що
 
  • Інтеграл по відрізку нульової довжини: має місце поняття інтеграла Рімана по відрізку нульової довжини, а саме для довільного aR вважаємо, що
 
  • Інтегровність на меншому відрізку: якщо fR([ab]), то fR([cd]) для довільного відрізку [cd] ⊂ [ab];
  • Адитивність: якщо fR([ab]) ∩ R([bc]) (a < b < c), то fR([ac]) і
 

Властивості зі знаком рівностіРедагувати

В цьому підрозділі вважаємо, що {a, b} ⊂ R — довільні.

  • Невиродженість: для всіх {a, b} ⊂ R має місце рівність
 
  • Лінійність: якщо {f, g} ⊂ R([ab]), то для довільних {α, β} ⊂ R([ab]) функція αf + βgR([ab]) та
 
  • Граничний перехід під знаком інтеграла Рімана: якщо fiR([ab]) рівномірно збігаються на [ab] до функції f, то fR([ab]) та
 

НерівностіРедагувати

В цьому підрозділі вважаємо, що a < b.

  • Невід'ємність: якщо fR([ab]) та невід'ємна на [ab], то
 
  • Нерівність інтегралів: якщо {f, g} ⊂ R([ab]) та f(x) ≤ g(x) для всіх x ∈ [ab], то
 
  • Оцінка модуля інтеграла: якщо fR([ab]), то |f| ∈ R([ab]) та
 

Інтегровність за Ріманом функційРедагувати

В цьому розділі наведено твердження, які дозволяють визначити, чи є функція інтегровна за Ріманом.

Критерій Дарбу інтегровності функціїРедагувати

Докладніше: Критерій Дарбу
 
Суми Дарбу для рівномірного розбиття λ: нижня (зліва) та верхня (справа)

Нижня та верхня суми Дарбу́ для функції f(x) та розбиття λ — це інтегральні суми, в яких відповідні точки {ci | λ} обираються як точні нижня та верхня межі функції f(x) відповідно.

Означення. Інтегральна сума для розбиття λ, для якої відповідні точки {ci | λ} вибираються з умови ci = inf[xi, xi+1] f(x), називається нижньою сумою Дарбу для функції f та розбиття λ і позначається одним із символів L(f, λ) (від англ. lower — «нижній») або s(f, λ).

Означення. Інтегральна сума для розбиття λ, для якої відповідні точки {ci | λ} вибираються з умови ci = sup[xi, xi+1] f(x), називається верхньою сумою Дарбу для функції f та розбиття λ і позначається одним із символів U(f, λ) (від англ. upper — «верхній») або S(f, λ).

За допомогою верхньої та нижньої сум Дарбу можна дати критерій інтегровності функції за Ріманом.

Теорема. Нехай f : [ab] → R — обмежена функція. Функція fR([ab]) тоді і лише тоді, коли

 

Класи інтегровних за Ріманом функційРедагувати

Теорема (про інтегровність неперервної функції). C([ab]) ⊂ R([ab]), тобто кожна неперервна на відрізку [ab] функція є інтегровною за Ріманом на цьому відрізку.

Теорема (про інтегровність монотонної функції). Кожна монотонна на відрізку [ab] функція є інтегровною за Ріманом на цьому відрізку.

Теорема (про інтегровність функції зі скінченною кількістю точок розриву). Нехай f : [ab] → R задовольняє умовам

  1. функція f(x) обмежена на [ab];
  2. fC([ab] \ {z1z2,…, zn}).

Тоді fR([ab]).

Приклад (неінтегровної обмеженої функції). Покажемо, що функція Діріхле

 

не інтегровна на довільному відрізку [a, b] ⊂ R. Тут Q — це множина раціональних чисел, а R — множина дійсних чисел.

На довільному відрізку [α, β] ⊂ R знайдуться як раціональна, так і ірраціональна точки. Тому при довільному розбитті λ відрізка [a, b] маємо

 

звідки у відповідності з критерієм Дарбу інтегровності функції DR([a, b]).

Методи обчислення інтегралів РіманаРедагувати

Теорема. Припустимо, що функція f задовольняє умовам

  1. fR([ab]);
  2. f має первісну F на [ab].

Тоді справедлива формула Ньютона—Лейбніца:

 

З формулою Ньютона—Лейбніца обчислення інтеграла Рімана зводиться до знаходження первісної для підінтегральної функції (див. методи знаходження первісної). Проте нею слід користуватися обережно, спочатку переконавшись у тому, чи задовільняє підінтегральна функція обом умовам теореми.

Приклад. Розглянемо інтеграл   «Первісна» підінтегральної функції дорівнює F(x) = −1/x. Тоді згідно з формулою Ньютона—Лейбніца шуканий інтеграл дорівнює F(1) − F(−1) = −2 < 0, що суперечить властивості невід'ємності інтеграла Рімана, оскільки f(x) = 1/x² > 0.

У наведеному «обчисленні» інтеграла допущено дві помилки:

  1. даний інтеграл не існує, оскільки підінтегральна функція необмежена на відрізку [-1, 1];
  2. функція f(x) розривна в точці x = 0, яка належить відрізку інтегрування, тому вона не має первісної на цьому відрізку.

Обчислення інтеграла Рімана за означеннямРедагувати

Безпосереднє обчислення визначеного інтеграла, виходячи з його означення (як границя інтегральних сум) зазвичай досить громіздке, однак все ж таки можливе.

Приклад. Обчислимо інтеграл

 

Покладемо f(x) = sin x, x ∈ [a, b]. Оскільки f C([a, b]), то f R([a, b]), тому для обчислення інтегралу досить знайти границю довільної послідовності інтегральних сум. Розглянемо рівномірне розбиття λn відрізку [a, b] на n рівних частин, Δx = (ba) / n, і запишемо інтегральну суму

 

Спрямувавши |λn| до нуля, отримаємо, що

 

Приклад. Обчислимо інтеграл

 

Покладемо f(x) = ex, x ∈ [0, 1]. Оскільки f C([0, 1]), то f R([a, b]). Отже, у відповідності з критерієм Дарбу інтегровності функцій

 

де λn — рівномірне розбиття відрізка [0, 1] на n рівних частин. Отже, маємо

 

звідки випливає, що

 

Інтеграл Рімана як функція верхньої межі інтегруванняРедагувати

ОзначенняРедагувати

Припустимо, що fR([ab]) (отже, fR([ax]) для довільного x ∈ [ab]). Покладемо

 

Вочевидь, φ(а) = 0.

ВластивостіРедагувати

  • Якщо fR([ab]), то φС([ab]).
  • Якщо fC([ab]), то φС1([ab]), причому для довільного x ∈ [ab]: φ'(x) = f(x).
  • Якщо fC([ab]), то f має первісну на [ab]. Первісними для f на [a, b] будуть функції вигляду φ(x) + c, c ∈ ℝ.

Формула ЛейбніцаРедагувати

Теорема. Нехай

  1. f : ℝ → ℝ iнтегровна за Рiманом по кожному вiдрiзку;
  2. f має первiсну на ℝ;
  3. функцiї a, b : ℝ → ℝ диференцiйовнi на ℝ.

Тодi

 

ІсторіяРедагувати

Таке означення інтеграла дано Коші[1], але воно застосовувалося лише до неперервних функцій.

Ріман в 1854 році[2], дав це ж означення без припущення неперервності.

Див. такожРедагувати

ПосиланняРедагувати

  1. Cauchy A. L., Sur la mécanique céleste et sur un nouveau calcul appelé calcul des limites, Turin 1831
  2. Riemann В., «Göttinger Akad. Abhandl.», 1868, Bd 13

ЛітератураРедагувати