Експеримент з олійними краплями

Експеримент з олійними краплями (дослід Міллікена) — класичний фізичний експеримент із вимірювання елементарного електричного заряду, здійснений 1909 року Робертом Ендрюсом Міллікеном та Гарві Флетчером. Експеримент встановив дискретність електричного заряду та визначив значення заряду електрона з точністю до 1%[1][2].

Схема експерименту Міллікена

Ідея досліду в тому, щоб скомпенсувати падіння зарядженої крапельки олії в гравітаційному полі Землі електричним полем. Міняючи напруженість електричного поля, можна змусити ті крапельки, які мають заряд, рухатися повільніше, зависнути в повітрі або ж рухатися вгору. Аналіз падіння краплі без електричного поля та в полях різної напруженості дозволяє визначити її масу та кулонівську силу, яка діє на неї, а отже, й електричний заряд.

Передісторія ред.

Електрони відкрив 1897 року Джозеф Джон Томсон, експериментуючи з катодними променями. Однак, на початок XX століття їх існування не було загальновизнаним фактом. Більшість електричних та електромагнітнах явищ добре описувалася, припускаючи, що заряд може мати будь-яке значення із неперервного спектру.

Коли Міллікен задумав свій експеримент, він працював у Чиказькому університеті. В роботі над експериментом йому допомагав Гарві Флетчер, однак він не фігурує в списку авторів публікації за домовленістю з Міллікеном — він отримав для своєї дисертації результати інших досліджень. Міллікен отримав 1923 року Нобелівську премію частково за цей експеримент.

Експериментальна установка ред.

 
Прилад для спостереження за рухом крапельок в електричному полі

Основною частиною приладу були плоскопаралельні електроди, розділені кільцем із ізоляційного матеріалу. До пластинок прикладалася напруга, що створювало між ними однорідне електричне поле. В ізоляторі були чотири отвори, три для освітлення, один для спостереження. Олія впорскувалася пульверизатором у камеру над пластинками, утворюючи туман, що складався з дрібних крапельок. Олійні краплі було обрано тому, що вони не випаровувалися при яскравому освітленні і маса крапельки залишалася постійною впродовж спостереження над нею. При впорскуванні частина крапельок електризувалася завдяки тертю. Додатково крапелькам можна було надати заряд опроміненням рентгенівськими променями. Крапельки падали в простір між електродами через отвір у верхньому з них. Міняючи напругу, можна було змусити їх рухатися вниз або вгору.

Теорія ред.

Без електричного поля крапельки прискорюються в полі тяжіння землі доти, доки сила тяжіння не буде врівноважена силою тертя, після чого вони рухатимуться зі сталою швидкістю. Силу тертя можна розрахувати за формулою шести піруетів Стокса:

 ,

де   — радіус краплі,   — в'язкість повітря,   — швидкість падіння.

Сила тяжіння з урахуванням сили Архімеда дорівнює:

 ,

де   та   — густини олії та повітря відповідно, g — прискорення вільного падіння.

Прирівнюючи ці дві сили, можна з високою точністю визначити радіус краплі:

 ,

а отже, й її масу.

В електричному полі крапля зависне тоді, коли сила тяжіння буде врівноважена електростатичною силою:

 ,

де   — заряд краплі,   — напруженість електричного поля,   — напруга між електродами,   — відстань між ними. Звідси можна визначити електричний заряд краплі:

 .

Одак, зручніше прикласти таке поле, що крапля рухалася вгору зі швидкістю  . Тоді, вимірявши цю швидкість, заряд краплі можна вирахувати за формулою:

 .

Результати ред.

Визначені значення заряду виявилися кратними величині 1,5924−19 Кл, в залежності від того, скільки зайвих електронів мала крапля. Сучасне значення елементарного заряду відрізняється на 1%. Систематична похибка в досліді Міллікена пояснювалася неточним значенням в'язкості повітря.

Експеримент мав вирішальне значення для утвердження думки про квантованість електричного заряду та існування частинки його носія — електрона. За свою елегантність експеримент фігурує в списку 10 найкрасивіших дослідів усіх часів, опублікованому Нью-Йорк Таймс[3].

Виноски ред.

  1. Elektrizitätsmengen, Phys. Zeit., 10(1910), p. 308
  2. Millikan, R. A. (1913). On the Elementary Electric charge and the Avogadro Constant. Phys. Rev. 2 (2): 109—143. Bibcode:1913PhRv....2..109M. doi:10.1103/PhysRev.2.109.
  3. 10 найкрасивіших дослідів усіх часів. Архів оригіналу за 10 серпня 2013. Процитовано 14 вересня 2013.